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Abstract 

 

Using covariant quantization of the electromagnetic field, the Casimir force per unit 

area experienced by a long conducting cylindrical shell, under both Dirichlet and 

Neumann boundary conditions, is calculated. The renormalization procedure is based 

on the plasma cut-off frequency for real conductors. The real case of a gold (silver) 

cylindrical shell is considered and the corresponding electromagnetic Casimir 

pressure is computed. It is discussed that the Dirichlet and Neumann problems should 

be considered separately without adding their corresponding results.  
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Introduction 

 

After the simple geometry of two flat neutral conducting plates firstly introduced by 

Casimir [1], many theoretical and experimental researches have been conducted 

regarding calculation of Casimir force in other geometrical set ups [2]. Calculation of 

the Casimir effect in cylindrical geometry, in addition to its theoretical importance, 

has valuable applications in new technological field of studies (e.g. the role of the 

Casimir effect in nanotubes [3-6]). The Casimir effect in cylindrical geometry has 

been studied by a number of researchers. One of the first important computations of 

the Casimir stress on a perfectly conducting cylindrical shell can be found in [7]; the 

result is an attractive stress proportional to the inverse square radius of the cylinder. 

The vacuum energies of scalar fields under Dirichlet and Neumann boundary 

conditions, with opposite signs, on an infinite cylindrical surface have been computed 

in [8]. The electromagnetic Casimir energy for an infinite solid cylinder made of a 

material with specified dielectric and magnetic properties has been calculated in [9]. 

An exact versus semiclassical result for the Casimir interaction between two perfectly 

conducting, infinite, concentric cylinders can be found in [10]. The Casimir 

interaction energy between two perfectly conducting concentric cylinders and the 

force between slightly eccentric cylinders have been computed in [11]. Authors of 

[12-14], have calculated the exact Casimir interaction energy/force between two 

perfectly conducting, very long, eccentric cylindrical shells. An exact expression for 

the Casimir force between a plate and a cylinder can be found in [15]. Although each 

of these researches has its special technique (e.g. Green function or mode by mode 

summation method) of computing the Casimir energy/force, all of them deal with 

non-covariant formulation of the electromagnetic field. Indeed, in the already known 

calculations of the electromagnetic Casimir effect, the quantum vacuum fluctuations 

corresponding to the non-covariant quantities E


 and B


 (the electric and magnetic 

fields separately) are considered. As we know, the origin of the Casimir effect refers 

to the virtual particles (photons) of the quantum vacuum state; are these quantum field 

theoretical “virtual” particles appeared in a non-covariant quantum theory of the 

electric and magnetic fields? Obviously, these vacuum particles are quanta of the 

covariant electromagnetic field tensor 
F  based on the four-vector potential 

A . 

Therefore, to have a better understanding of the quantum vacuum and the Casimir 

effect both conceptually and technically, we should work with the covariant 

quantization of the electromagnetic field. Here, we want to find the Casimir 

force/pressure experienced by a long real conducting cylindrical shell using covariant 

formulation of the electromagnetic field. Our calculation is based on a cut-off 

frequency regularization whose value is determined by the plasma frequency of the 

metal the cylindrical shell made of it. As we know, at low frequencies, all the 

metals/conductors have a real and frequency independent conductivity; but, at 

frequencies higher than the plasma frequency, the electromagnetic field- here the 

virtual photons causing the Casimir effect- “see” the conducting cylindrical shell 

transparent [16]. This means that for virtual photons with frequencies higher than the 

plasma frequency there is no boundary; in other words, there is no distinction between 

“in” and “out” of the shell and thus there is no Casimir effect. Only those photons 

whose frequencies are lower than the plasma frequency of the shell contribute to the 

Casimir effect. We restrict the upper bound of the integrals in the calculation of the 

Casimir force/pressure with plasma frequency cut-off. Although plasma frequency 

cut-off has been considered in the study of dielectrics (e.g. [17]), here we want to 

apply it to real conducting cylindrical shells. 
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A number of technical methods such as summation of modes [18], dimensional 

regularization [19], and Green function method [2] have been used to calculate the 

Casimir energy in different geometries. Among these well-known approaches, we use 

the Green function method based on a covariant formulation of the quantum theory of 

the electromagnetic field. The vacuum to vacuum expectation value of the covariant 

electromagnetic field tensor is found to be related to Feynman invariant delta function 

(time dependent Green function).  After finding the appropriate Green functions for a 

long circular cylinder of radius a  with both Dirichlet and Neumann boundary 

conditions, the electromagnetic Casimir force per unit area is computed. The Dirichlet 

and Neumann problems are considered separately without adding their corresponding 

results. 

 

The electromagnetic Casimir effect: covariant formalism 
 

In non-covariant formulation of the electromagnetic field, only the transverse 

radiation field is quantized. Since the decomposition of the field into transverse and 

longitudinal components is frame-dependent, this clearly hides the Lorentz-invariance 

of the theory. To have a covariant theory, all four components of the four-vector 

potential ),()( AxA


  , as the covariant dynamical variable under consideration, are 

quantized. The canonical stress tensor for the electromagnetic field
¶¶¶

 is [20] 
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 for the free electromagnetic field and  
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is the electromagnetic field tensor whose components are frame-dependent (non-

covariant) quantities E


 and B


. 

 

With the substitution of (2) and (3) in (1), it is found 
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Considering the operator form of the above relation and taking its vacuum to vacuum 

expectation value, it can be shown: 
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in which we have used the following well-known relations: 
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 )()( xAxAT    is the time-ordered product of the field operators and )(xF  is the 

famous Feynman delta-function (time dependent Green function) [20]. Thus 
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This means that to calculate the electromagnetic Casimir effect, it is enough to find 

the appropriate Green function corresponding to the geometry of the problem and then 

use the above relation for the vacuum to vacuum expectation value of the 

electromagnetic field stress tensor from which one can simply compute the desired 

Casimir force/pressure. The relation (10) is a general covariant formula which can be 

applied to different problems with different boundaries in flat (Minkowskian) space-

time; this is because the metric tensor 


g  with which we have worked is the 

Minkowskian metric tensor )1,1,1,1(  diagg


. Of course, using quantum field 

theory in curved space-time, the method used here can be generalized for application 

in curved space-time geometries. 

 

About the covariance of the formulation of the Casimir effect, we should mention that 

when a measurement is to be done, an experimentalist selects a specified (Lab.) frame 

and then experiences her/his aims. In other words, when one wants to find non-

covariant quantities for a particular problem (e.g. force/pressure) with its special 

geometry and thus with its particular Green function, she/he ought to select an 

appropriate (special) frame and work with non-covariant quantities (e.g. the distance 

between two plates).  
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Time dependent Green function (propagator) for a long conducting cylindrical 

shell 

 

A. Inside the shell 

 

Working in cylindrical coordinates ),,( z  and considering the special symmetry of 

the problem (an “infinitely” long cylindrical shell with circular basis of radius a ), the 

Green function is found as:  
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Application of the proper (Dirichlet and Neumann) boundary conditions leads to: 
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Using (11), (12) and (13), the proper Dirichlet and Neumann Green functions for the 

inside of the cylinder are found as the following: 
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B. Outside the shell 

 

For the outside of the shell, the boundary conditions are:   0, D
g  

(   0, 

 


N
g ) when a  and   functionGreenspacefreeg ,  

when  . Therefore,  

 

 

 
 

 
      16)()()()(

)(

)(
)

2
(, 11

1

1


  


 mmmm

m

mD

out JaHHaJ
aH

H

ic
g  

 

 

(17) 

 

 

 
 

 

     18)()()()(

)(

)(
)

2
(, 11

1

1





 


 

 


 mmmm

m

mN

out JaHHaJ

aH

H

ic
g  

 

 

 

 

 

 

 

 

 



 7 

 

(19) 

 

 

The electromagnetic Casimir effect for a long real conducting cylindrical shell  

 
1. Dirichlet problem 

 

The   component of the energy-momentum tensor (10) at the shell’s surface is 
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For the Dirichlet Green function, we simply arrive at the following result 
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By means of (14), it is found 
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Application of complex frequency rotation )(  i , );( 2
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using the rectangular to polar coordinates transformation  

lead to 
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in which mI  is the modified Bessel function of the first kind. 

 

Step by step repetition of all above works for the outside of the cylinder gives us  

 

 
(24) 

 
To calculate the force/pressure experienced by the shell, we need to find the following 

subtraction 

 25
)(

)(

)(

)(

)2( 0

2

2  













 





m m

m

m

m
D

out

D

in aK

aK

aI

aI
d

a

c
TT










  

 

Introducing the dimensionless variable ax  : 

 

 
(26) 

 

Except for 0m  term in (26), all the other terms are symmetrically equal to each 

other [21]; thus 
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The integral expressions in the relation (27) have infinite values; we have reached an 

irregular result that must be renormalized in some way. As we have explained in the 

introduction, we regularize the above relation with plasma frequency cut-off 

integration. Indeed, for frequencies higher than the plasma frequency corresponding 

to the material kind of the cylindrical shell, the surface of the shell behaves 

transparently and the virtual photons of the vacuum state do not “see” any boundary; 

this means for frequencies p  , there is no difference between “in” and “out” and 

the upper bound of the above integral formula should be stopped at the cut-off 

value a
c

x
p

 . This fact that a real material cannot constrain modes of the field with 

wavelengths much smaller (frequencies much higher) than a typical length (a cut-off 

frequency) scale has been studied and considered in [22] particularly for the Casimir 

scalar field energy in the geometry of plate(s) and sphere. Therefore, we can 

regularize the relation (27) as: 
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For real situations depending on different conductors with different material kinds and 

thus with different plasma frequencies, 
cutoffx  takes a variety of values, here we 

choose the following value 
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This is related to the real case of a cylindrical shell made of gold with a plasma 

frequency of the order of ( sec/1037.1 16
rad ) with a radius of 0.1 micrometer (100 

nanometers) which is a distance scale compatible to the current world of experiments deal 

with the Casimir effect; it is a distance scale at which the Casimir effect is noticeable. 

  

For the above value of cutoffx , using Mathematica program, it is found  
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For 1m , it can be simply shown that the terms under sum in (28) decrease enough 

rapidly as m  increases. This is because for 1cutoffx   the integrals under sum on m  

approach zero with increasing m . Indeed, the leading term in the relation (28) is the 

first integral (corresponding to the modified Bessel functions of zero order). Even for 

1cutoffx  with a large but finite value, the sum on m  in (28) converges. Considering 

and comparing the following computation of the one hundred and one thousand terms 

of the series on m   
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we can simply neglect the higher order terms.  

 

The integral relation (28), keeping the terms up to 1000m , is computed as 

 

)33(
4

3091.99
88.6304)-(-10.6787

4 4242
a

c

a

c
TT

dregularize

D

out

D

in 
  









  

 

To find the desired electromagnetic Casimir force/pressure, it is enough to integrate 

on the above expression as the following: 
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This is the electromagnetic Casimir force the unit area of the real conducting (gold) 

cylindrical shell (under Dirichlet boundary condition) experiences. 

 
 

2. Neumann problem 

 

For the Neumann Green function, using (20), the vacuum to vacuum expectation 

value of the   component of the electromagnetic energy-momentum tensor is 

found as: 

 

 
(36) 

 

For the inner part of the shell, according to (15), one can simply find  
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Applying complex frequency rotation )(  i , );( 2
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 and using 

the rectangular to polar coordinates transformation  lead to 
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For the outside of the cylinder, we arrive at the following expression:  
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In terms of the dimensionless variable ax  : 
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Again, we have reached some infinite/irregular integrals. Based on the same reasoning 

for the Dirichlet problem, we use plasma frequency cut-off. Although, in comparison 

to the series for the Dirichlet problem, a coefficient 2
m  exists here, the series still 

converges enough rapidly to neglect higher order terms. Using Mathematica 

program, for the real case of a gold cylindrical shell: 
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Keeping the first 1000 terms of the series: 
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This is the electromagnetic Casimir force the unit area of the real conducting (gold) 

cylindrical shell (under Neumann boundary condition) experiences. 

 

Conclusions 

 

We have studied the electromagnetic Casimir effect for a long real conducting 

cylindrical shell with a regularization method based on plasma frequency cut-off 

integration.  The electromagnetic Casimir pressure experienced by the real case of a 

gold cylindrical shell has been computed. In two Tables at the end of this section, the 

electromagnetic Casimir force (per unit area) for the case of a cylindrical shell made 

of silver has been also computed. All the numerical integrals have been computed 

using Mathematica program software. Both the Dirichlet Casimir force and the 

Neumann one are repulsive. In the already known computations of the Casimir effect 

based on non-covariant formalisms, one needs to add the Dirichlet and Neumann 

Casimir forces/pressures to find the electromagnetic Casimir force/pressure. Here, we 
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haven’t added these two “different” results. This is because in non-covariant 

formalisms, the electric and magnetic fields contribution to the total energy of the 

electromagnetic field is considered separately and the fields are (often) divided to TE 

and TM modes with Dirichlet and Neumann boundary conditions; but here in the 

covariant approach, the Dirichlet and Neumann boundary value problems are two 

different/separate problems. In the covariant quantization of the electromagnetic field, 

one quantizes 

 A  and doesn’t work with the non-covariant objects iE  and iB . Although iE  and iB  

have the main physical role of the electromagnetic fields in classical non-covariant 

arguments, we have quantized the covariant four potential A  (as a basis for the 

electromagnetic field tensor 
F ) as is usual in the standard canonical quantum 

theory of the electromagnetic field. Then, since the potential A  either satisfies 

Dirichlet or Neumann boundary conditions separately, we have led to this result that 

these two boundary conditions should be “disentangled”. 
 

As is clear from the data in the following tables, irrespective of the functional form of 

the forces, the numerical results directly depend on the cut-off values (material kinds); 

this is an unavoidable property of the Casimir energy for real materials [22]. 

 

Table1 (Dirichlet boundary condition) 
D

EMf  

per unit 

)(
3

a

c 
cutoffx 

a  

(meters) 
p  

(rad/sec) 
Material 

.805515 56667.4 710 161037.1   Gold 

0062.0 32167.0 710 141065.9    Silver 

 

Table2 (Neumann boundary condition) 
N

EMf  

per unit 

)(
3

a

c 
cutoffx 

a  

(meters) 
p  

(rad/sec) 
Material 

6774.0 56667.4 710 161037.1   Gold 

0286.0 32167.0 710 141065.9    Silver 

 

 

¶¶¶
 Although the 0i

th
  component of the electromagnetic stress tensor (1) doesn't 

initially identify with the linear momentum density (the Poynting vector) i
BE )(


 ,  
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because of the boundary conditions we are considering here and after necessary 

integral calculations, the additional terms in 
i

T
0

 are vanished finally and it acts as 

i
BE )(


  .             

 

*** 
Fermi Lagrangian density is simply found from the well-known Lagrangian density 


 FFL

4

1
  by choosing the covariant Lorentz gauge. It hasn’t any difficulty in the 

introduction of the zero component of momentum (conjugate) field [20].  Although working in 

Lorentz gauge has other difficulties that can be removed with the formalism introduced by 

Gupta and Bleuler [23-24], our physical results here corresponding to the Casimir effect are 

independent of choosing any particular gauge.  
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