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Abstract 

Reconsidering the already known important question that whether all the axioms and theorems in 

classical theory of probability are applicable to probability functions in quantum theory, we want 

to show that the so-called Bayes theorem isn’t applicable to nonfactorizable quantum entangled 

states. 
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Introduction 

 

Although the probability theory has been known in classical physics for a long time with well 

known concept and applications; but, in quantum mechanics (QM), in spite of using it as an 

important and key issue, its fundamental concept and interpretation is still controversial. Among 

a number of research works on the validity of using classical theory of probability (CTP) in 

quantum theory (e.g. [1-3]), one of the important considerations is the study of (in)consistency of 

CTP and QM. Although some researchers has already tried to show there is complete 

consistency between QM and CTP [4], here, we are going to show there isn't such a complete 

consistency for all quantum states.  

After a short review of Bayes theorem, we pay to quantum entanglement in summary and then 

show there isn't any possibility of applying Bayes theorem to quantum nonfactorizable 

(entangled) states.  

  

A short review of Bayes theorem  

 

It is common to consider some events as elementary events (e.g. event A ). There are some well-

known notations for composite events such as A~  (not A ) which shows the nonoccurrence of 

A , BA  ( A  and B ), which denotes the occurrence of both A  and A , BA  ( A  or B ),  which 

means occurrence of at least one of them. The operators ( ,~, ) are negation, conjunction, and 

disjunction respectively. The conditional probability function  BAP  meaning as the probability 

of the occurrence of event A  conditional on the occurrence of event B  has a basic role in 

introducing axioms of CTP. Among several equivalent expressions for the axioms of CTP and 

their corresponding theorems [5], considering the book by R. T. Cox [6], Bayes theorem is stated 

as the following:  

  

     ABPAPBAP                       (1). 

This means that the conjunction probability of two events A  and B  is equal to the product of the 

probability of the occurrence of one event on the probability of the occurrence of the other one 

conditional on the occurrence of the first one. For two independent (mutually exclusive or 

stochastically/statistically exclusive) events,   )(BPABP  ; thus, using Bayes theorem, it is 

found that 

     BPAPBAP 
                      

(2). 

 

Nonfactorizable states and quantum entanglement   



 
 
 

 

 

In classical physics, when two or more particles are combined and/or dependent on each other 

via any way as different forms of interaction and correlation, they can be separated and 

separately described particularly by enough spatial separation of them; but, in QM, there are 

some entangled states of two or more particles for them there isn't possible to have independent 

description and/or separated state of any of the particles even with distantly infinite spatial 

separation [7]. To explain more about such entangled states, consider tensor product of two 

Hilbert spaces AH  and BH  which is itself another Hilbert space may be named ABH : 

BAAB HHH                            (3). 

For two state vectors 
AA H  and 

BB H , there is a state vector: 

ABBABABA H  ,                           (4). 

This is a factorizable combined state vector. The corresponding quantum mechanical density 

operator (matrix) is also decomposable as: 

BAAB                                 (5); 

and, one can simply check the applicability of Bayes theorem to such states. 

 

But, there are some other combined states in the product space ABH  which cannot be factorized 

as in the above relations. Among many ones, one can consider the following (singlet state) 

entangled state: 

)(
2

1
, ABBAAB

       (6). 

There isn't any possibility of decomposing the above entangled state as what happened in (4) and 

(5) and thus: 

BAAB                            (7). 

  

Is Bayes theorem applicable to all quantum states? 

 

As mentioned in the introduction, there are some efforts to show complete consistency between 

the axioms of CTP and QM; but, if one considers quantum entangled (nonfactorizable) states, 

there isn’t such a consistency. One can simply check this by investigating the above-mentioned 

references that deal with the probability relations as )()( SRSR MMtrMMP   which are only 

applicable to factorizable states. If we want to study the applicability of Bayes theorem to all 



 
 
 

 

quantum states, we should consider nonfactorizable quantum entangled states too. This is 

because these states don't follow the simple factorizable relations used in proving the consistency 

of Bayes theorem with quantum probability functions. As an example, consider the well-known 

singlet state: 

)(
2

1
SRSRRS                          (8). 

As stated above, there isn’t any possibility of decomposing/factorizing the density state of such 

an above quantum state in terms of R  and S  states and thus no any possibility of factorizing the 

conjunction probability RSP  as a simple product of probabilities RP   and SP : 

     SPRPSRP            ?        (9). 

 

In different versions of Bell’s theorem (e.g. the Clauser-Horne Model [8]), it is well-known that 

the so-called locality condition (9) cannot be applied to the entangled state (8).  

Since the above locality condition is written based on Bayes theorem relation [9-10] 

     RSRSRS RSPRPSRP                  (13), 

this means, one cannot apply Bayes theorem to quantum nonfactorizable/entangled (here singlet 

state) states.  

 

Conclusion 

 

In this paper, we have shown there isn’t a complete consistency between CTP and QM. This has 

been proved by checking the applicability of Bayes theorem to all quantum states and 

considering the inconsistency of quantum entangled states with this theorem. We think the 

inconsistency of quantum nonfactorizable (entangled) states with the so-called locality condition 

in different models of Bell’s theorem (e.g. Clauser-Horne model) originates from the 

inconsistency between the CTP and quantum probability. Meanwhile, the reasons behind already 

known claims on the full consistency between the CTP and quantum probability are all based on 

working only with factorizable states rather than considering all quantum states consisting of 

quantum nonfactorizable (entangled) ones. 
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